Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

نویسندگان

  • Karin K M Chia
  • Chia-Chi Liu
  • Elisha J Hamilton
  • Alvaro Garcia
  • Natasha A Fry
  • William Hannam
  • Gemma A Figtree
  • Helge H Rasmussen
چکیده

Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Cell Signaling: Proteins, Pathways and Mechanisms 3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na -K pump in hyperglycemia induced by insulin receptor blockade

Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH. 3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na -K pump in hyperglycemia induced by insulin receptor blockade. Am J Physiol Cell Physiol 309: C286 –C295, 2015. First published June 10, 2015; doi:10.1152/ajpcell.00071.2015.—Dysregulated nitric oxide (NO)and superoxide (O2 )-dependent si...

متن کامل

β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.

BACKGROUND inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed to high cardiac myocyte Na(+) levels and upregulation of the β(3) AR in heart failure. ...

متن کامل

Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitri...

متن کامل

Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.

In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...

متن کامل

Adrenergic Stimulation of the Cardiac Na -K Pump by Reversal of an Inhibitory Oxidative Modification

(Ip) as the shift in holding current induced by ouabain. The synthetic 3 AR agonists BRL37344 and CL316,243 and the natural agonist norepinephrine increased Ip. Pump stimulation was insensitive to the 1/ 2 AR antagonist nadolol and the protein kinase A inhibitor H-89 but sensitive to the 3 AR antagonist L-748,337. Blockade of nitric oxide synthase abolished pump stimulation and an increase in f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 309 4  شماره 

صفحات  -

تاریخ انتشار 2015